Matrix exponentials and parallel prefix computation in a quantum control problem
نویسندگان
چکیده
Quantum control plays a key role in quantum technology, in particular for steering quantum systems. As problem size grows exponentially with the system size, it is necessary to deal with fast numerical algorithms and implementations. We improved an existing code for quantum control concerning two linear algebra tasks: The computation of the matrix exponential and efficient parallelisation of prefix matrix multiplication. For the matrix exponential we compare three methods: the eigendecomposition method, the Padé method and a polynomial expansion based on Chebyshev polynomials. We show that the Chebyshev method outperforms the other methods both in terms of computation time and accuracy. For the prefix problem we compare the tree-based parallel prefix scheme, which is based on a recursive approach, with a sequential multiplication scheme where only the individual matrix multiplications are parallelised. We show that this fine-grain approach outperforms the parallel prefix scheme by a factor of 2–3, depending on parallel hardware and problem size, and also leads to lesser memory requirements. Overall, the improved linear algebra implementations not only led to a considerable runtime reduction, but also allowed us to tackle problems of larger size on the same parallel compute cluster.
منابع مشابه
Fast 3D Block Parallelisation for the Matrix Multiplication Prefix Problem - Application in Quantum Control
For exploiting the power of supercomputers like the HLRB-II cluster, developing parallel algorithms becomes increasingly important. The matrix prefix problem belongs to a class of issues lending themselves for parallelisation. We compare the tree-based parallel prefix scheme, which is adapted from a recursive approach, with a sequential multiplication scheme where only the individual matrix mul...
متن کاملA High Performance Parallel IP Lookup Technique Using Distributed Memory Organization and ISCB-Tree Data Structure
The IP Lookup Process is a key bottleneck in routing due to the increase in routing table size, increasing traıc and migration to IPv6 addresses. The IP address lookup involves computation of the Longest Prefix Matching (LPM), which existing solutions such as BSD Radix Tries, scale poorly when traıc in the router increases or when employed for IPv6 address lookups. In this paper, we describe a ...
متن کاملA High Performance Parallel IP Lookup Technique Using Distributed Memory Organization and ISCB-Tree Data Structure
The IP Lookup Process is a key bottleneck in routing due to the increase in routing table size, increasing traıc and migration to IPv6 addresses. The IP address lookup involves computation of the Longest Prefix Matching (LPM), which existing solutions such as BSD Radix Tries, scale poorly when traıc in the router increases or when employed for IPv6 address lookups. In this paper, we describe a ...
متن کاملFast Finite Element Method Using Multi-Step Mesh Process
This paper introduces a new method for accelerating current sluggish FEM and improving memory demand in FEM problems with high node resolution or bulky structures. Like most of the numerical methods, FEM results to a matrix equation which normally has huge dimension. Breaking the main matrix equation into several smaller size matrices, the solving procedure can be accelerated. For implementing ...
متن کاملParallel computation framework for optimizing trailer routes in bulk transportation
We consider a rich tanker trailer routing problem with stochastic transit times for chemicals and liquid bulk orders. A typical route of the tanker trailer comprises of sourcing a cleaned and prepped trailer from a pre-wash location, pickup and delivery of chemical orders, cleaning the tanker trailer at a post-wash location after order delivery and prepping for the next order. Unlike traditiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Parallel Computing
دوره 36 شماره
صفحات -
تاریخ انتشار 2010